SYSTEM NOTES AND SYMBOLS
A bladder tank and concentrate controller may be used for small open head foam/water deluge systems, but the cost may be prohibitive. Another choice for small, open head foam/water deluge systems with low water pressures, would be the use of an eductor system with an atmospheric foam storage tank. The eductor is better suited to this type of system, since it is less expensive, and easier to install on small deluge systems, than the bladder tank system would be.

Eductors are designed so that when a specific flow range of water passes through the eductor, a strong venturi effect takes place, which causes foam concentrate to be drawn into the eductor. The foam concentrate is stored in an atmospheric pressure container that can be located at an elevation lower than the eductor (see eductor tech data sheets for specific information). Because of this strong venturi effect, there is a very high pressure drop across the device, of approximately 35%. Therefore, eductor systems have always required a high water supply inlet pressure for economical system design. Viking eductors can operate with as little as 50 psi inlet pressure, and as much as 200 psi inlet pressure.

The Example in Figure 2 is a small four head system covering approximately 400 sq. ft. of operating area. It will require a .2 gpm/sq. ft. density, and a 10 minute duration, using AFFF 3% foam for a hydrocarbon fuel. The water pressure available is 90 psi at the eductor. This 90 psi can flow 43.2 gpm, which is well above the listed minimum pressure for the FE-60 eductor, at an inlet pressure of 7 psi. The Viking FE-60 eductor, at an inlet pressure of 90 psi, can flow 43.2 gpm, which should be enough to satisfy the 20 gpm per head for 2 heads, or 40 gpm, as shown in Figure 2. For this example, the friction loss and flows through both legs, from the discharge side of each eductor to hydraulic balance point A, must be equal, or the system will not function properly.

NOTE: The piping cannot be joined into a common feed main to supply the four sprinklers from one riser, without insuring that the friction losses and flows are exactly equal in each leg.

1. Calculate the Estimated Foam Concentrate Supply. The estimated foam concentrate supply for Figure 2 can be calculated in the same fashion as for larger systems, by using the following formula:

EFC = total system (De) x (A) x (C) x (D) x (1.15), so the estimated amount of foam would be

EFC = (2.2 gpm/sq. ft. x 400 sq. ft.) x 3% x 10 minutes x 1.15 (15% overage factor)

EFC = 80 gpm x .03 x 10 x 1.15

AOF = 27.6 Gallons of foam concentrate for a 10 minute system foam supply.

2. Calculate the Discharge Device flows or Kd. This is done in the same fashion as for any hydraulically calculated system, by multiplying the sprinkler head square foot coverage by the required density. In this case, this would mean an actual flow test of the system, to insure that the proper percentage of foam/water solution, as well as calculated system flows are achieved, and an eductor discharge pressure which cannot exceed 65% of its inlet pressure.

3. Select the Eductor/Discharge Device (Sprinkler).

Kd(total) must be equal to, or greater than Ke(1.6). If dual FE-60 eductors are selected, each has a K-factor of 4.55 with 3% foam, so (4.55 x 1.6) = 7.28. Therefore, 7.28/ 4 heads = 1.82 or greater, is the approximate K-factor for the 4 heads on this system. This means that in order to use the FE-60 eductor, the system has to use 3/8 inch orifice sprinklers, or larger. Viking 3/8 inch orifice sprinklers have a K-factor of 2.7 and would require an operating pressure of 54.86 psi (P = (20/2.7) 12) in order to provide a .2 density over 100 square feet of operating area. This is too high of an operating pressure for the available inlet pressure for the eductors (90 psi). (Remember that the outlet pressure of the eductor must not be more than 65% of the eductor inlet pressure. 90 psi x .65 = 58.5 psi, or the maximum eductor outlet pressure to design the system. This results in too little pressure remaining, (approx. 3.6 psi) to design the piping system with, so the K-factor must change. If we want to maintain the maximum 100 sq. ft. spacing, Viking \(\frac{1}{2} \) " orifice sprinklers have a K-factor of 5.5, so 7.28/5.5 = 1.3 heads, or possibly two \(\frac{3}{4} \) " orifice heads can be supplied from one FE-60 eductor at the available pressure. The starting pressure for a \(\frac{3}{4} \) " Viking sprinkler at a .2 density over 100 square feet, is 13.22 psi (P = 20/5.5)12, well above the listed minimum pressure of 7 psi. The Viking FE-60 eductor, at an inlet pressure of 90 psi, can flow 43.2 gpm, which should be enough to satisfy the 20 gpm per head for 2 heads, or 40 gpm, as shown in Figure 2. For this example, the friction loss and flows through both legs, from the discharge side of each eductor to hydraulic balance point A, must be equal, or the eductors will not function properly.

NOTE: The piping cannot be joined into a common feed main to supply the four sprinklers from one riser, without insuring that the friction losses and flows are exactly equal in each leg.

4. Perform Finished Hydraulic Calculations. Now it is simply a matter of performing the finished hydraulic calculations to size the piping from the sprinkler heads (discharge devices) back to the eductor. Remember that the outlet pressure of the eductor is only 65 percent maximum of inlet pressure so .65 x 90 = 58 psi available to design the system, including any elevation loss. Subtracting the end head starting pressure from the eductor's available pressure (58 psi available at outlet of eductor, minus the 13.22 end head starting pressure for the \(\frac{3}{4} \) " orifice sprinkler, = 44.78 psi left to run calculations). This still leaves the de-
signer with enough pressure to allow for the piping friction loss and elevation height pressure loss, (H).

NOTE: The system piping must be sized in order to use up as much of the 44.78 psi as possible, or there will be too much of a pressure imbalance. The pressure imbalance will then affect the flow range of the eductor, resulting in a rich foam/water solution. Once the finished calculations have been completed, the actual amount of foam concentrate can be calculated by multiplying the Actual Calculated system Flow (ACF) \(\times \) (C) \(\times \) (D).

\[H = \text{Pressure Loss due to Height (PE)} \]

\[Kd = \text{K Factor for Discharge Devices such as Sprinklers, hose stations, small monitor nozzles} \]

\[Kd (\text{Total}) = Ke(1.6) \text{ The sum of the discharge device K-Factors must be equal to or greater than } 1.6 \text{ times the K-Factor of the Eductor.} \]

\[Ke = \text{K Factor for Foam Eductors. (See Technical data sheet for individual K-Factors.} \]

\[P1 = \text{Inlet Pressure to the Viking Eductor.} \]

\[P2 = \text{Outlet Pressure P1(.65)} \text{ This is the outlet pressure of the Viking Eductor.} \]

\[P3 = \text{Pressure @ Discharge Device – Flow Pressure at the Discharge Device.} \]

\[PL = \text{Pressure Loss in piping due to flow (friction loss)} \]

FIGURE 2

LOW PRESSURE (50-90 PSI) FIXED EDUCTOR

NOTE: THE FLOW AND FRICTION LOSS FROM THE OUTLET OF EDUCTOR 1 TO BALANCE POINT A, MUST MATCH THE FLOW AND FRICTION LOSS FROM OUTLET OF EDUCTOR 2 TO BALANCE POINT A.