1. DESCRIPTION

Viking Supervised Surefire® Preaction Systems Utilize the Viking G-2000P Valve. The small profile, lightweight, pilot operated Viking G-2000P Valve comes complete with the trim shown in Figure 8. The system piping is pressurized with air or nitrogen for all Surefire® Systems as part of the fail safe release and to supervise the integrity of the piping under normal power conditions. This feature serves to prevent undetected leaks in the system piping network and allows automatic fire protection upon complete loss of power. If the system piping or a sprinkler is damaged, the supervisory pressure is reduced and a “low air” supervisory alarm is activated.

This pilot operated externally reset valve also includes an internal check diaphragm which eliminates the need for a separate check valve being installed in the system riser.

Surefire® Preaction Systems require one 24 VDC normally closed electric solenoid valve and one 24 VDC normally open (NO) solenoid valve controlled by the Viking VFR-400 Release Control Panel with a compatible detection system. In addition, a pneumatic actuator is required as part of the release system.

Single Interlock Applications

In fire conditions, when the detection system operates, the system control panel energizes the normally closed solenoid valve open. When the solenoid opens, priming water is relieved from the internal prime chamber assembly. The prime chamber assembly collapses, and water passes through the G-2000P Valve and internal check diaphragm to the system piping network. If a situation occurs that removes both the primary and secondary power supplies, the pneumatic actuator becomes the release mechanism and the system will operate as a dry pipe system.

Double Interlock Applications

In fire conditions, when the detection system operates and a sprinkler head opens, the system control panel energizes the normally closed solenoid valve open. When the solenoid opens, priming water is relieved from the internal prime chamber assembly. The prime chamber assembly collapses, and water passes through the G-2000P Valve and internal check diaphragm to the system piping network. If a situation occurs that removes both the primary and secondary power supplies, the pneumatic actuator becomes the release mechanism and the system will operate as a dry pipe system.

Surefire® Preaction Systems are commonly used where it is important to control accidental water discharge due to inadvertent damage to the sprinkler piping.

2. LISTING AND APPROVALS

UL Listed: VLFT

FM Approved: Preaction Sprinkler Systems

3. TECHNICAL DATA

Specifications:

Pressure Rating: 250 PSI (17.2 Bar) Water Working Pressure
Factory Hydrostatically Tested to: 500 PSI
Friction Loss (Given in feet of Schedule 40 pipe based on Hazen & Williams formula C = 120):

- Model G-2000P Valve: 8.5'
- 10" Section of Pipe: 1'
- Water Supply Control Valve: 1.9'
- Model G-2000P Valve Cv Factor: 115.6
- Valve Color: Black

Material Specifications:

Refer to Figure 11.

Ordering Information:

Available since 2010
Part Number: Surefire® Preaction System Riser Assembly: 16189-1 (Refer to Figure 8)
Accessories:

- Drain Manifold: 16211 (Refer to Figure 9)
- Model E-1 Accelerator: 08055
- Model LD-1 Anti-Column Device: 14800

Form No. F_011710

Replaces page 332a-l, dated July 1, 2011. (Revised the replacement parts list and Figure 11.)
4. INSTALLATION:

A. General Installation Instructions
1. For proper operation and approval, the valve must be installed in the vertical position as trimmed from the factory. DO NOT modify the factory assembled trim except as described in this technical data sheet.
2. A 10” section of pipe is provided with the Model G-2000P Surefire® Preaction System Riser Assembly. Prior to valve maintenance, this section of pipe may be removed to provide clearance for lifting the cover from the valve body.
3. The G-2000P Valve must be installed in an area not subject to freezing temperatures or physical damage. If required, provide a valve house (enclosure) with adequate heat around the G-2000P Valve and trim. Freezing temperatures will damage the G-2000P Valve. When corrosive atmospheres and/or contaminated water supplies are present, it is the owner’s responsibility to verify compatibility with the Model G-2000P Valve and associated equipment.
4. The Viking Model E-1 Accelerator should be installed at the location indicated in Figure 4 when required.
5. The optional Model LD-1 Anti-Column Device may be installed to prevent water accumulation above the G-2000P Valve.

Table 1 - Pipe Capacity for Sizing Compressors

<table>
<thead>
<tr>
<th>Pipe Diameter</th>
<th>US Schedule 40</th>
<th>US Schedule 10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1” DN25</td>
<td>1” DN25</td>
</tr>
<tr>
<td></td>
<td>1-1/4” DN32</td>
<td>1-1/4” DN32</td>
</tr>
<tr>
<td></td>
<td>1-1/2” DN40</td>
<td>1-1/2” DN40</td>
</tr>
<tr>
<td></td>
<td>2” DN50</td>
<td>2” DN50</td>
</tr>
<tr>
<td></td>
<td>2-1/2” DN65</td>
<td>2-1/2” DN65</td>
</tr>
<tr>
<td></td>
<td>3” DN80</td>
<td>3” DN80</td>
</tr>
<tr>
<td></td>
<td>3-1/2” DN90</td>
<td>3-1/2” DN90</td>
</tr>
<tr>
<td></td>
<td>4” DN100</td>
<td>4” DN100</td>
</tr>
<tr>
<td></td>
<td>5” DN125</td>
<td>5” DN125</td>
</tr>
<tr>
<td></td>
<td>6” DN150</td>
<td>6” DN150</td>
</tr>
<tr>
<td></td>
<td>8” DN200</td>
<td>8” DN200</td>
</tr>
</tbody>
</table>

Table 2 - Air Pressure Settings

<table>
<thead>
<tr>
<th>System Pressure</th>
<th>For Systems with Tank-Mounted Compressors:</th>
<th>For Systems with Riser-Mounted Compressors:</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 100 PSI (0 - 6.9 bar)</td>
<td>Air Maintenance Device</td>
<td>Compressor On/ Off Switch</td>
</tr>
<tr>
<td>100 - 200 PSI (6.9 - 13.8 bar)</td>
<td>Low Air Pressure Supervisory Switch (SUP 2)</td>
<td>30 PSI (2.1 bar) / 40 PSI (2.8 bar) / 50 PSI (3.4 bar)</td>
</tr>
<tr>
<td>200 - 250 PSI (13.8 - 17.2 bar)</td>
<td>Low Air Alarm Pressure Switch (Zone 2)</td>
<td>40 PSI (2.8 bar) / 50 PSI (3.4 bar) / 60 PSI (4.1 bar)</td>
</tr>
</tbody>
</table>

Table 3 - Quick Reference Compressor Size

<table>
<thead>
<tr>
<th>Compressor Size (HP)</th>
<th>Free Air @ 40 PSI (2.8 bar) (cfm)</th>
<th>Max. System Size to Pump to 40 PSI (2.8 bar) in 30 Minutes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/6</td>
<td>1.0</td>
<td>90</td>
</tr>
<tr>
<td>1/3</td>
<td>2.0</td>
<td>180</td>
</tr>
<tr>
<td>1/2</td>
<td>3.1</td>
<td>300</td>
</tr>
<tr>
<td>1</td>
<td>5.9</td>
<td>600</td>
</tr>
</tbody>
</table>

B. Air Supply Design

1. Air Compressor Size

Viking recommends tank-mounted air compressors for Surefire® Preaction Systems.

System Supervisory Air Pressure

NFPA 13 requires the air supply to be capable of filling the entire sprinkler system to its required air pressure within 30 minutes. A common method of sizing an air compressor is to use the following formula:

\[
\text{Compressor Size (cfm)} = \frac{V \times P}{7.48 \times 14.7 \times T}
\]

Where:
- \(V \) = Volume
- \(P \) = Required Air Pressure
- \(T \) = Fill time (typically 30 min.)

\[7.48 = \text{gal.} / \text{ft.}^3\]
\[14.7 = \text{atmospheric pressure} \]

Example:

System volume as determined by table 1 = 750 gallons

Required Air pressure = 30 PSI (2.1 bar)

\[
\begin{align*}
\text{Compressor Size (cfm)} & = \frac{(750 \times 30)}{7.48 \times 14.7 \times 30} \\
& = 6.8 \text{ cfm}
\end{align*}
\]

Therefore, the compressor shall be capable of providing 7 cfm.
2. Nitrogen Cylinder Gas Supply (See Figure 4)
Nitrogen may be used in place of air compressors. Nitrogen is supplied in pressurized cylinders in various sizes and pressures. Some of the most common are 122 Cu. Ft. at 1,900 PSI (3,455 L at 131 bar), 225 Cu. Ft. at 2,100 PSI (6,372 L at 145 bar), and 280 Cu. Ft. at 2,300 PSI (7,930 L at 159 bar).

When nitrogen cylinders are used as a primary air supply, spare cylinders should be furnished and located at the valve location. To determine the approximate amount of nitrogen to be furnished, the following formula may be used:

\[V_c = \frac{V_s \times P}{100} \]

English Units
- \(V_c \) = Volume of Cylinder (ft\(^3\))
- \(V_s \) = Volume of System (gal)
- \(P \) = Required Nitrogen Pressure (PSI)

Metric Units
- \(V_c \) = Volume of Cylinder (L)
- \(V_s \) = Volume of System (L)
- \(P \) = Required Nitrogen Pressure (bar)

Special attention must be given to systems employing a bottled-gas supply. Because only a limited amount of gas is available, small leaks which normally would go unnoticed in systems being supplied by mechanical compressors, can become critical to the system’s overall performance. If the system is to function at temperatures as low as -40 °F (-40 °C), and, if bottled nitrogen is the gas supply, the system is particularly susceptible to leakage, and special care should be taken to ensure against leaks throughout the entire system.

C. Air Supply Installation
1. Install the required air supply as described in section B. The size of the compressor and amount of air required should be determined in accordance with Tables 1, 2 & 3. The air or nitrogen supply to the Preaction System must be clean, dry, and oil free.

2. Automatic air supplies must be regulated, restricted, and from a continuous source. A Viking Air Maintenance Device should be installed on each system equipped with a tank-mounted compressor, plant air or nitrogen. For compressors with a capacity less than 5.5 ft\(^3\)/min at 10 PSI (0.154 m\(^3\)/min at 0.69 bar), NFPA 13 does not require an air maintenance device. In addition, the use of an air maintenance device with riser mounted compressors can lead to compressor "short cycling". Viking always recommends that a tank mounted compressor with air maintenance device be used. This can become critical when accelerators are installed on the system.

D. Pressure Switch Wiring:
Wire the Alarm Pressure Switch (PS10) and Air Supervisory Switch (PS40), and adjust pressure settings as shown in Figures 1 - 3.

E. Hydrostatic Test:
The Preaction System, including Sprinkler Piping and Sprinklers shall be hydrostatically tested at 200 PSI (13.79 bar) and maintained for 2 hours, in accordance with NFPA 13. Systems normally subjected to working system pressures in excess of 150 PSI (10.34 bar) shall be tested at a pressure of 50 PSI (3.45 bar) in excess of system working pressure.
Figure 4 - Air Supply Options

- Tank Mounted Air Compressor Option
- Riser Mounted Air Compressor Option

NOTE: Riser Mounted Air Compressor is NOT Recommended for the Double Interlock System.
F. Placing the Valve in Service: (Refer to Figure 5)

When the Preaction System is ready to be placed in service, verify that the electric release system is in a normal condition.

1. Verify that the water supply main control valve (not shown) supplying the G-2000P Valve is closed.
2. Close the prime valve.
3. Open the main drain valve.
4. Open the flow test valve.
5. Drain all water from the preaction system. If the system has operated, or if water has entered the system, allow enough time to completely drain the system.
6. Close the main drain valve.
7. Establish air pressure on the system.
8. Open the priming valve. Prime water pressure will enter and expand the valves internal diaphragm assembly onto the valve seat, effectively closing the valve. Verify prime pressure has been established on the prime pressure gauge.
9. Verify that no water flows from the drip check when the plunger is pushed.
10. When the priming pressure has been verified as being established, slowly open the water supply control valve (not shown).
11. When flow is developed from the flow test valve, CLOSE the flow test valve.
12. Fully open the water supply main control valve.
13. Secure all valves in their normal operating position.
14. Reset the release control panel.
15. Notify Authorities Having Jurisdiction and those in the affected area that the system is in service.
16. The system is now fully operational.

G. Operational Test:

An operational test shall be performed on the system in accordance with NFPA 13. Refer to Section 6 for Inspection and Operation Test Procedures.

Figure 5 - Trim Components
5. OPERATION

A. In the Set position:
When air pressure is introduced into the sprinkler piping, the sensing end of the pneumatic actuator is pressurized. This closes the pneumatic actuator. The closed pneumatic actuator, and the normally closed solenoid valve prevent prime water from escaping the prime chamber of the G-2000P Valve. When prime water enters the prime chamber, the rolling diaphragm is pressurized, causing it to expand downward onto the water seat.
B. Fire Condition:

1. Single Interlock System

When the detection system operates, the normally closed solenoid valve is powered open. Prime water is drained from the prime chamber, causing the G-2000P Valve to open, filling the sprinkler piping with water. Water from the intermediate chamber of the G-2000P Valve pressurizes the sensing end of the PORV causing the PORV to open. The open PORV prevents water pressure from building in the prime chamber, preventing the G-2000P Valve from closing prematurely.

2. Double Interlock System

When the detection system operates and a sprinkler head operates, the normally closed solenoid valve is powered open. Prime water is drained from the prime chamber, causing the G-2000P Valve to open, filling the sprinkler piping with water. Water from the intermediate chamber of the G-2000P Valve pressurizes the sensing end of the PORV causing the PORV to open. The open PORV prevents water pressure from building in the prime chamber, preventing the G-2000P Valve from closing prematurely.
C. Loss of System Air Pressure:
When a sprinkler operates, air pressure is lost from the sprinkler piping. The Air pressure supervisory switch activates, and the VFR-400 Release Control Panel powers the NO solenoid closed. When enough air pressure is lost, the pneumatic actuator opens. However, the now closed NO solenoid prevents water from draining out of the prime chamber and the valve does not operate. The valve will operate once the detection system opens the NC solenoid.

D. Loss of Power:
When AC Power and DC power supplied by the back-up batteries is lost, the normally open solenoid will remain open, and the pneumatic actuator is the only device holding the prime water in the prime chamber. When a sprinkler operates, air pressure is lost and the pneumatic actuator opens. Prime water is drained from the prime chamber, causing the G-2000P Valve to open, filling the sprinkler piping with water.

6. INSPECTION AND OPERATIONAL TEST

NOTICE: THE OWNER IS RESPONSIBLE for MAINTAINING THE FIRE PROTECTION SYSTEM AND DEVICES IN PROPER OPERATING CONDITION. It is imperative that the system is inspected and tested on a regular basis in accordance with NFPA 25.

The frequency of the inspections may vary due to contaminated water supplies, corrosive water supplies, corrosive atmospheres, as well as the condition of the air supply to the system. For minimum maintenance and inspection requirements, refer to NFPA 25. In addition, the Authority Having Jurisdiction may have additional maintenance, testing, and inspection requirements that must be followed. Viking does not require internal inspection of the valve as part of routine inspection and testing. Internal maintenance is generally only required for valve repairs and internal component replacement.

WARNING: Any system maintenance that involves placing a control valve or detection system out of service may eliminate the fire protection capabilities of that system. Prior to proceeding, notify all Authorities Having Jurisdiction. Consideration should be given to employment of a fire patrol in the affected areas.

A. Low Air Pressure Alarm Test: (Refer to Figure 5)
Quarterly testing of low air alarms is recommended.
To Test the Sprinkler System “Low Air Supervisory” Alarm:
1. To prevent operation of the G-2000P Valve and filling the system with water during the test, DO NOT operate the electric detection system during the test. Consider closing the main water supply control valve.
2. Partially open the sprinkler system main drain or sprinkler system test valve.
3. Verify that low air alarms operate within an acceptable time period and continue without interruption.
4. Close the valve opened in step 3.
5. Establish the supervisory air pressure to the recommended pressure (refer to Table 2).
6. Reset the system release control panel. Alarms should stop.

B. Full Flow Trip Test: (Refer to Figure 5)
Performance of a trip test is recommended annually during warm weather. Consider coordinating this test with operation testing of the detectors.

CAUTION! PERFORMANCE OF THIS TEST WILL CAUSE THE G-2000P VALVE TO OPEN AND THE SPRINKLER SYSTEM TO FILL WITH WATER.
To Trip Test the Surefire® Preaction System:
1. Notify the Authority Having Jurisdiction and those in the area affected by the test.
2. Trip the G-2000P Valve by performing option “a” or “b” below.
 a. Operate the release control system according to the manufacturer’s instructions. In the case of a double interlocked system, also open the sprinkler system test valve to drain the air out of the system.
 b. Operate the emergency release valve.
3. The G-2000P Valve should open, filling the sprinkler system with water. Water flow alarms should operate.
4. Open the sprinkler system main drain or inspector’s test valve to verify adequate flow.
When Trip Testing is complete:
5. Perform steps 1 through 13 of section 4.F. PLACING THE SYSTEM IN SERVICE to return the system to service.
6. Notify the Authority Having Jurisdiction and those in the affected area that testing is complete.
7. MAINTENANCE

Viking does not require an internal inspection of the G-2000P Valve unless there is an indication of damage to internal components.

A. Taking the system out of service: (Refer to Figure 5)
 1. Close the water supply main control valve, placing the system out of service.
 2. Open the flow test valve located in the base of the G-2000P Valve.
 3. Close the air (or nitrogen) supply to the preaction system piping.
 4. Close the priming valve.
 5. Relieve all air pressure from the preaction system piping. If the system has operated, open the main drain valve to allow the system to drain completely.

B. Removing the Cover from the Valve Body: (Refer to Figures 5 & 11)
 1. Remove the 2” grooved coupling from the top of the G-2000P Valve.
 2. Remove the 10” section of pipe directly above the G-2000P Valve.
 3. Break the 1/2” coupling between the air pressure gauge and the air pressure supervisory switch.
 4. Remove the 3/4” union below the main drain.
 5. Remove the 8 cover screws (8).
 6. The cover and trim that is still connected may now be removed from the valve body. (It may be necessary to pry the valve open as the diaphragm may bond itself to the cover and body over time.)

C. Removing / Replacing the Check Diaphragm: (Refer to Figure 11)
 1. The check diaphragm (7) may be lifted from the valve body (1).
 2. If necessary, replace the check diaphragm (7).

D. Inspecting the Prime Chamber and Coupling for leaks: (Refer to Figure 5)
 If desired, it is possible to set the G-2000P Valve and inspect for leaks with the cover (9) removed.
 1. Remove the pneumatic actuator, and plug the outlet of the NO solenoid valve.
 2. Slowly open the prime valve.
 3. With prime water established, partially open the main water supply control valve.

E. Removing / Replacing the Prime Coupling: (Refer to Figure 11)
 1. Open the 1/2” union on the prime line.
 2. Using a wrench on the flats of the coupling (6), remove the coupling (6) from the valve body (1).
 3. Inspect the coupling (6) and O-rings. Replace if necessary, using the instructions in O-Ring Replacement Bulletin F_120611.

F. Removing / Replacing the Prime Chamber Assembly: (Refer to Figure 11)
 1. The prime chamber assembly (4) is now held in place by two flanges on the outside diameter of the assembly. Slide the prime chamber assembly (4) toward the prime line and remove from the valve body (1).
 2. Inspect and replace if necessary.
 3. Inspect the seat. The seat should be clean and free of foreign material. If the seat is damaged, the G-2000P Valve must be replaced.

G. Re-Assembling the Valve: (Refer to Figure 11)
 1. Place the prime chamber assembly (4) in the valve body (1). Make sure the two flanges are positioned in the groove.
 2. Thread the prime coupling (6) into the valve body (1). Make sure the end of the prime coupling (6) is inserted into the prime chamber assembly (4).
 3. Lay the check diaphragm (8) into the valve body (1).
 4. Position the cover (9) onto the valve body (1), and install and tighten the cover screws.
 5. Re-install any trim that was removed.
 6. Place the valve in service by following the steps in Section 4.F.

8. AVAILABILITY

The Viking Model G-2000P Valve is available through a network of domestic and international distributors. See the Viking Corp. Web site for closest distributor or contact The Viking Corporation.
Section 10 - Assembly

Part Number 16189-1:

1 Model G-2000P Valve
1 Model G-2000P Surefire® Trim (Includes NC & NO Solenoids & Pneumatic Actuator)
1 10" Section of Schedule 10 Pipe and Coupling
1 Air Pressure Supervisory Switch (PS40-2A)
1 Alarm Pressure Switch (PS10-2A)
1 Water Supply Control Valve

Figure 8 - 16189-1 Assembly

Accessories:

08055 Model E-1 Accelerator
14800 Model LD-1 Anti-Column Device
16211 Drain Manifold

Figure 9 - Optional Accessories
Figure 10 - Installation Dimensions
Figure 11 - Model G-2000P Valve Components List/Replacement Parts

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Part No.</th>
<th>Description</th>
<th>Material</th>
<th>No. Req'd</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>--</td>
<td>Body</td>
<td>65-45-12 Ductile Iron</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>--</td>
<td>Seat</td>
<td>UNS-C11000 Copper or UNS-S30400 Stainless Steel</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>--</td>
<td>Anaerobic Adhesive</td>
<td>--</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>16063</td>
<td>Prime Chamber Assembly</td>
<td>Brass, EPDM, Nitrile, 304 Stainless Steel, Bronze Alloy</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>*</td>
<td>O-Rings</td>
<td>EPDM and Nitrile</td>
<td>2 or 3**</td>
</tr>
<tr>
<td>6</td>
<td>16062</td>
<td>Coupling</td>
<td>UNS-S17400 Stainless Steel</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>15932</td>
<td>Check Diaphragm</td>
<td>EPDM</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>08091</td>
<td>3/8-16 x 1" HHS</td>
<td>UNS-S30400 Stainless Steel</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>--</td>
<td>Cover</td>
<td>65-45-12 Ductile Iron</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>--</td>
<td>Data Plate</td>
<td>Aluminum</td>
<td>2</td>
</tr>
<tr>
<td>11</td>
<td>--</td>
<td>Tack</td>
<td>Alloy Carbon Steel</td>
<td>4</td>
</tr>
</tbody>
</table>

* Replacement part is not available.

** Indicates part is available only in a Sub-Assembly, as indicated below.

Sub-Assembly

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Part No.</th>
<th>Description</th>
<th>No. Req'd</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>17443</td>
<td>O-Ring Replacement Kit (**Refer to O-Ring Replacement Bulletin Form No. F_120611 for instructions.)</td>
<td>1</td>
</tr>
</tbody>
</table>

Replaces page 332a-l, dated July 1, 2011. (Revised the replacement parts list and Figure 11.)