

HIGH PRESSURE FIXED FOAM EDUCTOR SYSTEM

The Viking Corporation, 211 N Industrial Park Drive, Hastings MI 49058 Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-945-4495 Email: techsvcs@vikingcorp.com

SYSTEM NOTES AND SYMBOLS

A bladder tank and concentrate controller may be used for small open head foam/water deluge systems, but the cost may be prohibitive. Another choice for these kinds of systems, would be the use of an eductor system with an atmospheric foam storage tank. The eductor is better suited to this type of system, since it is less expensive, and easier to install on small deluge systems, than the bladder tank system would be.

Eductors are designed so that when a specific flow range of water passes through it, a strong venturi effect takes place, which causes foam concentrate to be drawn into the eductor. The foam concentrate is stored in an atmospheric pressure container that can be located at an elevation lower than the eductor (see eductor tech data sheets for specific information). Because of this strong venturi effect, there is a very high pressure drop across the device, of approximately 35% or more. Therefore, eductor systems have always required a high water supply inlet pressure for economical system design. Viking eductors can operate with water supplies as low as 50 psi inlet pressure, and as high as 200 psi inlet pressure, as long as there is sufficient volume to satisfy the flow requirement of the eductor.

The Example in Figure 1 indicates a small four head system covering approximately 400 ft². of operating area. It will require a .2 gpm/ft² density, and a 10 minute duration, using AFFF 3% foam for a hydrocarbon fuel. The water pressure available is 150 psi at the eductor. This 150 psi inlet pressure will affect the selection process of the eductor, as it will limit the amount of flow which can pass through the eductor. Therefore, the system may require one larger eductor, or multiples of smaller eductors, in order to provide the necessary foam/water solution to the discharge devices. For this example (Figure 3), a single larger flow eductor (model FE-90) capable of providing a foam/water solution to all four sprinklers will be used.

1. Calculate the Estimated Foam Concentrate Supply.

The estimated foam concentrate supply for Figure 1 can be calculated in the same fashion as for larger systems, by using the following formula; EFC = total system (De) x (A) x (C) x (D) x (1.15), so the estimated amount of foam would be:

EFC = (.2 gpm/ft². ft. x 400 sq. ft.) x 3% x 10 minutes x 1.15 (15% overage factor)

EFC = 80 gpm x .03 x 10 x 1.15

AOF = 27.6 Gallons of foam Concentrate for a 10 minute system foam supply.

Where:

A = Area of operation EFC = Estimated Foam Concentrate supply C = % of Foam Concentrate D = Duration in minutes De = Density Q = Total Discharge Flow for each Eductor (Q =K \sqrt{P}) is not include any foam for a system test. NFPA and Vik

This does not include any foam for a system test. **NFPA and Viking recommend that these systems be proof tested in order to verify system design.** This would mean an actual flow test of the system to insure that the proper percentage of foam/water solution, as well as calculated system flows are achieved, and at an eductor discharge pressure which cannot exceed 65% of its inlet pressure.

2. Calculate the Discharge Device flows or Kd.

This is done in the same fashion as for any hydraulically calculated system, by multiplying the sprinkler head square foot coverage by the required density. In this case, this would mean 100 ft² x .2 density, or 20 gpm per head x 4 heads, for a total flow of 80 gpm minimum, times 1.15, for a 15 percent overage factor. This would result in a maximum flow of 92 gpm of foam/water solution for this particular system.

HIGH PRESSURE FIXED FOAM EDUCTOR SYSTEM

The Viking Corporation, 211 N Industrial Park Drive, Hastings MI 49058 Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-945-4495 Email: techsvcs@vikingcorp.com

3. Select the Eductor/Discharge Device (Sprinkler).

Kd (total) must be equal to, or greater than **Ke**(1.6). If a model FE-90 eductor is selected, it has a K-factor of 6.73 with 3% foam, so (6.73) x (1.6) = 10.77. Therefore, 10.77/4 heads = 2.69 or greater, is the approximate K-factor for the 4 heads on this system. This means that in order to use the FE-90 eductor, the system has to use a minimum of 3/8" inch orifice sprinklers, or larger. Viking 3/8" orifice sprinklers have a K-factor of 2.7, and would require an operating pressure of 54.9 psi (P = $(20/2.7)^2$) in order to provide a .2 density over 100 square feet of operating area. This is well below the outlet pressure of the FE-90 eductor. (Remember that the outlet pressure of the eductor must not be more than 65% of the eductor inlet pressure). 150 psi x .65 = 97.5 psi, which is the maximum eductor outlet pressure available to design the system. This results in enough pressure remaining, (approximately. 42.6 psi) to design the piping system, so the 3/8" sprinklers are adequate in order to maintain the maximum 100 sq. ft. spacing. The Viking FE-90 eductor can provide approximately 82.42 gpm at an inlet pressure of 150 psi Q=KP).

4. Perform Finished Hydraulic Calculations.

Now it is simply a matter of performing the finished hydraulic calculations to size the piping from the sprinkler heads (discharge devices) back to the eductor. Remember that the outlet pressure of the eductor is only 65 percent maximum of inlet pressure so .65 x 150 = 97.5 psi available to design the system, including any elevation loss. Subtracting the end head starting pressure from the eductor's available pressure (97.5 psi available at outlet of eductor, minus the 54.9 psi end head starting pressure for the 3/8" orifice sprinkler, = 42.6 psi left to run calculations). This still leaves the designer with enough pressure to allow for the piping friction loss and elevation height pressure loss, (H). NOTE: The system piping must be sized in order to use up as much of the 42.6 psi as possible, or there will be too much of a pressure imbalance. The pressure imbalance will then affect the flow range of the eductor, resulting in a lean foam/water solution. Once the finished calculations have been completed, the actual amount of foam concentrate can be calculated by multiplying the Actual Calculated system Flow (ACF) x (C) x (D).

HIGH PRESSURE FIXED FOAM EDUCTOR SYSTEM

The Viking Corporation, 211 N Industrial Park Drive, Hastings MI 49058 Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-945-4495 Email: techsvcs@vikingcorp.com

H = Pressure Loss due to Height (PE)

Kd = K Factor for Discharge Devices such as Sprinklers, hose stations, small monitor nozzles

Kd (Total) = Ke (1.6) The sum of the (Total) Discharge Device K-Factors must be equal to or greater than 1.6 times the K-Factor of the Eductor.

Ke = K Factor for Foam Eductors. (See Technical data sheet for individual K-Factors).

P1 = Inlet Pressure to the Viking Eductor.

P2 = Outlet Pressure = P1(.65) This is the outlet pressure of the Viking Eductor.

P3 = Pressure @ Discharge Device – Flow Pressure at the Discharge Device.

PL = Pressure Loss in piping due to flow (friction loss)

FIGURE 1 HIGH PRESSURE (150-200 PSI) FIXED EDUCTOR

THIS PAGE INTENTIONALLY LEFT BLANK