1. PRODUCT NAME
Viking Model VMN 3050 Oscillating Monitor Nozzle
VMN 3050 Manufactured 1998 –
Viking Model VMN 3075 Oscillating Monitor Nozzle
VMN 3075 Manufactured 1998 –
Viking Model VMN 3100 Oscillating Monitor Nozzle
VMN 3100 Manufactured 1998 –
Viking Model VMN 3125 Oscillating Monitor Nozzle
VMN 3125 Manufactured 1998 –

2. MANUFACTURER
The Viking Corporation
210 N. Industrial Park Road
Hastings, Michigan 49058 U.S.A.
Telephone: (616) 945-9501
(800) 968-9501
Fax Number: (616) 945-9599
From outside U.S.A.
Telephone: +1 (616) 945-9501
Fax Number: +1 (616) 945-9599

3. PRODUCT DESCRIPTION
The Viking Model VMN 3050, 3075, 3100 and 3125 are combination fog/straight stream nozzles designed for use with deck pipes and station monitors. Viking Model VMN 3050, 3075, 3100, and 3125 nozzles are to be used specifically with the Viking Model VFOM 30 Oscillating Monitor. Viking Model VMN 3050, 3075, 3100, and 3125 nozzles are utilized in spot cooling discharge applications and sweeping discharge applications of water or foam/water solution.

4. TECHNICAL DATA
Listings and Approvals: None
Connections:
Model VMN 3050 - 2-1/2" Female N.H.
Model VMN 3075 - 2-1/2" Female N.H.
Model VMN 3100 - 2-1/2" Female N.H.
Model VMN 3125 - 2-1/2" Female N.H.
Pressure Rating: 175 psi (1 207 kPa) water working pressure
Recommended Flow Range:
Model VMN 3050 - 500 GPM
Model VMN 3075 - 750 GPM
Model VMN 3100 - 1000 GPM
Model VMN 3125 - 1250 GPM
All flows at 100 PSI
Shipping Weight: 13.5 Lbs.

5. FEATURES
a. The Viking Model VMN 3050, 3075, 3100, 3125 nozzles are adjustable from a strong impinging straight stream for greater distances and a maximum effective reach to a 180 degree fog curtain.
b. A grease zert fitting is provided on the nozzle bodies for lubrication to ensure proper adjustment over the life of the devices.
c. Viking Model VMN 3075, 3100, 3125 nozzles are constructed of an industrial grade cast brass.

6. OPERATION
Water or Foam/Water solution is forced through the Model VMN 3050, 3075, 3100, 3125 nozzles. The setting of the nozzle tip will predicate the flow pattern produced. VMN nozzles are to be placed on the Viking Oscillating Monitors and Viking Monitors. Refer to NFPA standards for their specific system applications.

7. APPLICATION
The Viking VMN nozzles are recommended for:
a. Aircraft Hangars with underwing protection (to be used with Viking Oscillating Monitors)
b. Helidecks and Heliports (to be used with Viking Oscillating Monitors or Viking Monitors)
c. Tank Cooling operations (to be used with Viking Oscillating Monitors or Viking Monitors)
d. Platform Oil Rigs fixed protection (may require the use of Elevated Monitors)
e. Tank farm protection as prescribed in NFPA 11. (to be used with Viking Oscillating Monitors or Viking Monitors)

8. AVAILABILITY
The Viking VMN nozzles are available through a network of Domestic, Canadian, and International Distributors. See the Yellow Pages of the telephone directory for your closest distributor (listed under “Sprinklers Automatic Fire”) or, contact The Viking Corporation.

9. GUARANTEES
For details of warranty, refer to Viking’s current list price schedule or contact Viking directly.

10. INSTALLATION
The Viking VMN nozzles are equipped with a nominal 2-1/2" female hose thread located at the base of the nozzle. The nozzle is to be installed on the 2-1/2" male hose thread of the Viking Oscillating Monitor or Viking Monitor. Setting of the water stream is performed by flowing water through the monitor and adjusting the discharge pattern by “twisting” the nozzle tip to the desired flow pattern.

11. INSPECTIONS AND TESTS
The Viking VMN nozzles are to be tested for the desired flow pattern after installation. Inspection of the VMN nozzles are required to be performed at the same intervals as the fire protection system. No obstruction of the discharge outlet should exist. Any damaged parts are to be replaced or repaired.

12. MAINTENANCE
A grease zert fitting is provided on VMN nozzles for periodic servicing. A lithium based grease is to be utilized for lubrication when servicing VMN nozzles. If corrosive atmospheres exist in the hazard area, inspection and maintenance may be required at more frequent intervals.