1. DESCRIPTION
(Refer to Figures 1-4.)
Viking Deluge Systems utilize a Viking Deluge Valve to control the water supply to system piping equipped with open sprinklers and/or spray nozzles. The system piping remains empty until the Deluge Valve is activated by operation of the release system. Deluge systems are commonly used where it is desirable to simultaneously spray water from all open sprinklers and/or nozzles on the system when the system operates. Hydraulically controlled deluge systems require a hydraulic release system equipped with thermostatic (rate-of-rise) releases, and/or fixed-temperature releases, and/or pilot heads.
In fire conditions, operation of a releasing device on the hydraulic release system opens the deluge valve, allowing water to enter the system piping. Water will flow from any open sprinklers and/or spray nozzles on the system.

2. LISTINGS AND APPROVALS
FM Approved - The Viking hydraulically controlled deluge system is FM Approved when installed with specific components. Refer to current FM Approval Guide. Consult the manufacturer for any component approvals too recent to appear in the FM Approval Guide.

3. SYSTEM OPERATION
(Refer to Figures 1-4)
A. IN THE SET CONDITION
System water supply pressure enters the priming chamber and hydraulic release piping of the deluge valve through the 1/4" (6.4 mm) priming line, which includes a normally open priming valve, strainer, restricted orifice, check valve and normally closed P.O.R.V. (B.10). In the SET condition, water supply pressure is trapped in the priming chamber and hydraulic release piping by check valve and closed releasing devices. The pressure in the priming chamber holds the deluge valve clapper closed, keeping the outlet chamber and system piping dry.

B. IN FIRE CONDITIONS
In fire conditions, when a releasing device operates, water pressure in the hydraulic release system is allowed to escape. Hydraulic pressure is released from the priming chamber faster than it is supplied through restricted orifice. The deluge valve clapper opens to allow water to flow into the system piping and alarm devices, causing water motor alarm and water flow alarms connected to alarm pressure switch to activate. Water will flow from any open sprinklers and/or spray nozzles on the system.

C. FOR DELUGE VALVE TRIM
When the deluge valve operates, the air side of PORV (B.10) loses pressure, causing the PORV (B.10) to operate. When the PORV (B.10) operates, it continually vents the priming chamber to prevent the Deluge Valve from resetting even if the open releasing devices close. The Deluge Valve can only be reset after the system is taken out of service, and the outlet chamber of the deluge valve and associated trim piping are de-pressurized and drained.

D. TROUBLE CONDITIONS
If the hydraulic release system operates due to mechanical damage or malfunction, the deluge valve will open. Water will flow from any open sprinklers and/or spray nozzles on the system. Water motor alarm and alarms connected to alarm pressure switch will activate.

E. MANUAL OPERATION
Any time the handle inside emergency release (B.11) is pulled, pressure is released from the priming chamber and the deluge valve (A.1) will open. Water will flow into the system piping and from any open sprinklers and/or spray nozzles on the system. Alarm devices will operate.

4. INSTALLATION
Refer to current Viking Technical Data describing individual components of the Viking Deluge System. Technical Data describing the Viking Deluge Valve, and other system components are packed with product and in the Viking Engineering Design Data book.
Also, refer to applicable installation standards, codes, and Authorities Having Jurisdiction.
1. The deluge valve, trim, and entire hydraulic release system must be installed only in areas where they will not be subjected to freezing temperatures.
2. Alarm pressure switch should activate when pressurized to 4 to 8 PSI (.3 to .6 bar) on pressure rise. Alarm pressure switch should be wired to activate the water flow alarm.
3. Release system piping for the hydraulically controlled deluge valve must not exceed the maximum elevation allowed for hydraulic release piping above the deluge valve. Refer to Technical Data for the hydraulically operated deluge valve used.
4. The water supply to the hydraulic release system must include restricted orifice to ensure that the priming line cannot replace hydraulic pressure as fast as it escapes when a releasing device operates.

It is recommended practice to provide an inspectors test connection on the hydraulic release system. The inspectors test connection...
The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058
Telephone: 269-945-9501 Technical Services 877-384-5464 Fax: 269-818-1680 Email: techsvc@vikingcorp.com

Deluge 203b
should be equipped with a ball valve (normally locked closed) capable of being opened to simulate the opening of a releasing device. Locate the connection and valve at the highest, most hydraulically demanding location of the release system. Inspectors test connections provided on hydraulic release systems should terminate in an orifice equal to the smallest orifice of the releasing devices provided. The inspectors test connection may be used to test operation of the deluge system and to verify that the priming line cannot replace hydraulic pressure as fast as it escapes when a releasing device operates. Refer to INSPECTIONS and TESTS section 7.

5. PLACING THE SYSTEM IN SERVICE
(Refer to Figures 1-4)

NOTE: FOR NEW INSTALLATIONS, REFER TO INSTRUCTIONS PROVIDED IN TECHNICAL DATA DESCRIBING THE VIKING DELUGE VALVE AND OTHER SYSTEM COMPONENTS. (SEE SECTION 8.)

To Return a System to Service:
1. Verify that the system has been properly drained. Auxiliary drain (B.6) should be open. Verify that emergency release (B.11) is closed. Priming valve (B.1) should be closed.
2. Verify that the inspectors test valve and any auxiliary drains on the hydraulic release system are closed.
3. Open priming valve (B.1) to establish hydraulic pressure in the priming chamber and the hydraulic release system. Verify that the pressure indicated on priming pressure water gauge (B12) indicates that the priming chamber is pressurized with system water supply pressure.
4. Open flow test valve (B.15).
5. Partially open main water supply control valve (D.1).
6. When full flow develops from flow test valve (B.15), close the flow test valve (B.15). Verify that there is no flow from open auxiliary drain (B.6).
7. Close auxiliary drain (B.6).
8. Fully open and secure the main water supply control valve (D.1).
9. Verify that the alarm shut-off valve (B.9) is open and that all other valves are in their normal operating position.
10. Depress the plunger of drip check (B.7). No water should flow from the drip check (B.7) when the plunger is pushed.

6. EMERGENCY INSTRUCTIONS
(Refer to Figures 1-4)

To Take System Out of Service:

WARNING: PLACING A CONTROL VALVE OR DETECTION SYSTEM OUT OF SERVICE MAY ELIMINATE THE FIRE PROTECTION CAPABILITIES OF THE SYSTEM. PRIOR TO PROCEEDING, NOTIFY ALL AUTHORITIES HAVING JURISDICTION. CONSIDERATION SHOULD BE GIVEN TO EMPLOYMENT OF A FIRE PATROL IN THE AFFECTED AREAS.

After a fire, verify that the fire is OUT and that placing the system out of service has been authorized by the appropriate Authority Having Jurisdiction.
1. Close the water supply control valve (D.1).
2. Close the priming valve (B.1).
3. Open the auxiliary drain (B.6).
4. Silence alarms (optional). To silence electric alarms controlled by pressure switch (C.1) and to silence water motor alarm (C.2), close alarm shut-off valve (B.9).

NOTE: ELECTRIC ALARMS CONTROLLED BY A PRESSURE SWITCH INSTALLED IN THE ½” (15 MM) NPT CONNECTION FOR A NON-INTERRUPTIBLE ALARM PRESSURE SWITCH CANNOT BE SHUT OFF UNTIL THE DELUGE VALVE IS RESET OR TAKEN OUT OF SERVICE.

NOTE: SPRINKLER SYSTEMS THAT HAVE BEEN SUBJECTED TO A FIRE MUST BE RETURNED TO SERVICE AS SOON AS POSSIBLE. THE ENTIRE SYSTEM MUST BE INSPECTED FOR DAMAGE, AND REPAIRED OR REPLACED AS NECESSARY.

5. Replace any thermostatic releases (E.1) that have been damaged. Replace any fixed temperature releases (E.2) or pilot heads E.3) that have operated. To drain the hydraulic release piping (optional), pull the handle inside emergency release (B.11).
6. Replace any sprinklers and/or spray nozzles that have been damaged or exposed to fire conditions.
7. Perform all maintenance procedures recommended in Technical Data describing individual components of the system that has operated.
7. INSPECTIONS AND TESTS

NOTICE: THE OWNER IS RESPONSIBLE FOR MAINTAINING THE FIRE PROTECTION SYSTEM AND DEVICES IN PROPER OPERATING CONDITION.

It is imperative that the system be inspected and tested on a regular basis in accordance with NFPA 25. Refer to INSPECTIONS and TESTS recommended in current Viking Technical Data describing individual components of the Viking Deluge System used. (See section 8 for hyperlinks to Viking Technical Data.)

The frequency of the inspections may vary due to contaminated water supplies, corrosive water supplies, corrosive atmospheres, as well as the condition of the air supply to the system. For minimum maintenance and inspection requirements, refer to NFPA 25. In addition, the Authority Having Jurisdiction may have additional maintenance, testing, and inspection requirements that must be followed.

WARNING: Any system maintenance that involves placing a control valve or detection system out of service may eliminate the fire protection capabilities of that system. Prior to proceeding, notify all Authorities Having Jurisdiction. Consideration should be given to employment of a fire patrol in the affected areas.

To Test Operation of the Deluge System:

Caution! Performing this test results in operation of the Deluge Valve. Water will flow into the sprinkler piping and from any open sprinklers and/or nozzles. Take necessary precautions to prevent damage.

1. Fully open the hydraulic release system inspectors test valve to simulate operation of a releasing device.
2. The deluge valve (A.1) should open.
 a. Water flow alarms should operate.
 b. Water should fill the sprinkler piping and flow from any open sprinklers and/or nozzles.
3. Close the inspectors test valve.

When testing is complete, return the system to service:
1. Close water supply control valve (D.1).
2. Open auxiliary drain (B.6).
3. Perform steps 1 through 10 in section 5. PLACING THE SYSTEM IN SERVICE.

8. ORDERING INSTRUCTIONS

To order a complete Hydraulic Release Deluge System, the following components must be purchased: Deluge Valve, Conventional Trim, and Release System components.
Valve Part Numbers

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>NOMINAL SIZE</th>
<th>PART NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>DELUGE VALVE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angle Style</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Threaded NPT</td>
<td>Painted Red</td>
<td></td>
</tr>
<tr>
<td>Model & Pipe O.D.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flange Flange</td>
<td>Painted Red</td>
<td></td>
</tr>
<tr>
<td>Flange Drilling</td>
<td>Model E-1</td>
<td></td>
</tr>
<tr>
<td>ANSI</td>
<td>3"</td>
<td>05912C</td>
</tr>
<tr>
<td>ANSI</td>
<td>4"</td>
<td>05969C</td>
</tr>
<tr>
<td>ANSI</td>
<td>6"</td>
<td>05906C</td>
</tr>
<tr>
<td>ANSI/Japanese</td>
<td>6"</td>
<td>07136</td>
</tr>
<tr>
<td>PN10/16</td>
<td>DN100</td>
<td>08629</td>
</tr>
<tr>
<td>PN10/16</td>
<td>DN150</td>
<td>08631</td>
</tr>
<tr>
<td>Flange Flange</td>
<td>Painted Red</td>
<td></td>
</tr>
<tr>
<td>Flange Drilling</td>
<td>Model E-2</td>
<td></td>
</tr>
<tr>
<td>ANSI</td>
<td>3"</td>
<td>08362Q/B</td>
</tr>
<tr>
<td>ANSI</td>
<td>4"</td>
<td>08363Q/B</td>
</tr>
<tr>
<td>ANSI</td>
<td>6"</td>
<td>08364Q/B</td>
</tr>
<tr>
<td>PN10/16</td>
<td>DN80</td>
<td>08862Q/B</td>
</tr>
<tr>
<td>PN10/16</td>
<td>DN100</td>
<td>08863Q/B</td>
</tr>
<tr>
<td>PN10/16</td>
<td>DN150</td>
<td>08864Q/B</td>
</tr>
<tr>
<td>Flange Flange</td>
<td>Painted Red</td>
<td></td>
</tr>
<tr>
<td>Flange Drilling</td>
<td>Model E-1</td>
<td></td>
</tr>
<tr>
<td>ANSI</td>
<td>3"</td>
<td>05835C</td>
</tr>
<tr>
<td>ANSI</td>
<td>4"</td>
<td>05839C</td>
</tr>
<tr>
<td>ANSI</td>
<td>6"</td>
<td>05846C</td>
</tr>
<tr>
<td>PN10/16</td>
<td>DN80</td>
<td>09539</td>
</tr>
<tr>
<td>PN10/16</td>
<td>DN100</td>
<td>09540</td>
</tr>
<tr>
<td>PN10/16</td>
<td>DN150</td>
<td>09546C</td>
</tr>
<tr>
<td>HALAR®</td>
<td>Flange Drilling</td>
<td>Pipe O.D.</td>
</tr>
<tr>
<td>ANSI</td>
<td>3"</td>
<td>11064Q/B</td>
</tr>
<tr>
<td>ANSI</td>
<td>4"</td>
<td>11065Q/B</td>
</tr>
<tr>
<td>ANSI</td>
<td>6"</td>
<td>11010Q/B</td>
</tr>
<tr>
<td>PN10/16</td>
<td>DN16</td>
<td>11010Q/B</td>
</tr>
</tbody>
</table>

Valve Trim Package Part Numbers

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>NOMINAL SIZE</th>
<th>PART NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONVENTIONAL DELUGE VALVE TRIM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Galvanized Brass</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1½" / DN40</td>
<td>14629-1</td>
<td>14629-2</td>
</tr>
<tr>
<td>2" / DN50</td>
<td>14630-1</td>
<td>14630-2</td>
</tr>
<tr>
<td>3" / DN60</td>
<td>14631-1</td>
<td>14631-2</td>
</tr>
<tr>
<td>4" / DN100</td>
<td>14632-1</td>
<td>14632-2</td>
</tr>
<tr>
<td>6" / DN150</td>
<td>14633-1</td>
<td>14633-2</td>
</tr>
</tbody>
</table>

Note: When viewing this datapage online, Part Numbers displayed in BLUE are hyperlinks. Clicking the part number will open the corresponding Technical Data Page.
FIGURE 1: ANGLE DELUGE VALVE WITH CONVENTIONAL TRIM
1-1/2” VALVE SHOWN

SYSTEM COMPONENTS
A. Valve
 A.1 Deluge Valve
B. Deluge Valve Conventional Trim *
 (See Deluge Valve Conventional Trim Charts)
 B.1 Priming Valve
 B.2 Strainer
 B.3 1/16” Restricted Orifice
 B.4 Spring Loaded Check Valve
 B.5 Alarm Test Valve (Normally Closed)
 B.6 Auxiliary Drain Valve (Normally Closed)
 B.7 Drip Check Valve
 B.8 Drain Check Valve
 B.9 Alarm Shut-Off Valve (Normally Open)
 B.10 Pressure Operated Relief Valve (P.O.R.V.)
 B.11 Emergency Release
 B.12 Priming Pressure Water Gauge and Valve
 B.13 Water Supply Pressure Gauge and Valve
 B.14 Drain Cup
 B.15 Flow Test Valve (Normally Closed)
C. Water Flow Alarm Equipment
 C.1 Alarm Pressure Switch and/or
 C.2 Water Motor Alarm (Strainer Required)
 C.3 Strainer
D. Riser
 D.1 Water Supply Control Valve
E. Release System
 E.1 Thermostatic Release C-1/C-2 and/or
 E.2 Fixed Temperature Release and/or
 E.3 Pilot Head (Sprinkler)

CAUTION
DO NOT EXCEED MAXIMUM HEIGHT ALLOWED
FOR HYDRAULIC RELEASE PIPING ABOVE
THE DELUGE VALVE.

FOR MAXIMUM HEIGHT ALLOWED, REFER TO
CURRENT TECHNICAL DATA DESCRIBING THE
VIKING DELUGE VALVE USED.

* Viking Deluge Valve Trim Packages contain items B.1 through B.15 and associated nipples. Viking Accessory
 Package for Conventional Deluge Valve Trim contains B.2 through B.5, B.7 through B.11, and B.14.

--- Dashed lines indicate pipe required but not listed in *System Components* Table.
SYSTEM COMPONENTS

A. Valve
 A.1 Deluge Valve

B. Deluge Valve Conventional Trim *
 (See Deluge Valve Conventional Trim Charts)
 B.1 Priming Valve
 B.2 Strainer
 B.3 1/16" Restricted Orifice
 B.4 Spring Loaded Check Valve
 B.5 Alarm Test Valve (Normally Closed)
 B.6 Auxiliary Drain Valve (Normally Closed)
 B.7 Drip Check Valve
 B.8 Drain Check Valve
 B.9 Alarm Shut-Off Valve (Normally Open)
 B.10 Pressure Operated Relief Valve (P.O.R.V.)
 B.11 Emergency Release
 B.12 Priming Pressure Water Gauge and Valve
 B.13 Water Supply Pressure Gauge and Valve
 B.14 Drain Cup
 B.15 Flow Test Valve (Normally Closed)

C. Water Flow Alarm Equipment
 C.1 Alarm Pressure Switch and/or
 C.2 Water Motor Alarm (Strainer Required)
 C.3 Strainer

D. Riser
 D.1 Water Supply Control Valve
 D.2 90° Ell. (Grooved Ell Shown. Deluge Valve also available with Flanged Outlet.)

E. Release System
 E.1 Thermostatic Release and/or
 E.2 Fixed Temperature Release and/or
 E.3 Pilot Head (Sprinkler)

CAUTION: DO NOT EXCEED MAXIMUM HEIGHT ALLOWED FOR HYDRAULIC RELEASE PIPING ABOVE THE DELUGE VALVE.

FOR MAXIMUM HEIGHT ALLOWED, REFER TO CURRENT TECHNICAL DATA DESCRIBING THE VIKING DELUGE VALVE USED.

FIGURE 2: ANGLE DELUGE VALVE WITH CONVENTIONAL TRIM
6" VALVE SHOWN. ALSO AVAILABLE IN 2", 3", & 4".
SYSTEM COMPONENTS

A. Valve
 A.1 Deluge Valve

B. Deluge Valve Conventional Trim
 (See Deluge Valve Conventional Trim Charts)
 B.1 Priming Valve (Normally Open)
 B.2 Strainer
 B.3 1/16" Restriction
 B.4 Spring Loaded Check Valve
 B.5 Alarm Test Valve (Normally Closed)
 B.6 Auxiliary Drain Valve (Normally Closed)
 B.7 Drip Check Valve
 B.8 Drain Check Valve
 B.9 Alarm Shut-Off Valve (Normally Open)
 B.10 Pressure Operated Relief Valve (P.O.R.V.)
 B.11 Emergency Release
 B.12 Priming Pressure Water Gauge and Valve
 B.13 Water Supply Pressure Gauge and Valve
 B.14 Drain cup
 B.15 Flow Test Valve (Normally Closed)

C. Water Flow Alarm Equipment
 C.1 Alarm Pressure Switch and/or
 C.2 Water Motor Alarm (Strainer Required)
 C.3 Strainer

D. Riser
 D.1 Water Supply Control Valve

E. Release System
 E.1 Thermostatic Release and/or
 E.2 Fixed Temperature Release and/or
 E.3 Pilot Head (Sprinkler)

CAUTION

DO NOT EXCEED MAXIMUM HEIGHT ALLOWED FOR THE HYDRAULIC RELEASE PIPING ABOVE THE DELUGE VALVE.

FOR MAXIMUM HEIGHT ALLOWED, REFER TO CURRENT TECHNICAL DATA DESCRIBING THE VIKING DELUGE VALVE USED.

Dashed lines indicate pipe required but not included with Deluge Valve Conventional Trim Packages.

** 1/2" (15 mm) NPT for Non-Interruptible Alarm Pressure Switch (Optional)

FIGURE 3: STRAIGHT THROUGH DELUGE VALVE WITH HORIZONTAL CONVENTIONAL TRIM

6" VALVE SHOWN. ALSO AVAILABLE IN 1-1/2", 2", 2-1/2", 3", 4" & 8".

FIGURE 4: STRAIGHT THROUGH DELUGE VALVE WITH CONVENTIONAL VERTICAL TRIM

6" VALVE SHOWN. ALSO AVAILABLE IN 1-1/2", 2", 2-1/2", 3", 4" & 8".

CAUTION

DO NOT EXCEED MAXIMUM HEIGHT ALLOWED FOR THE HYDRAULIC RELEASE PIPING ABOVE THE DELUGE VALVE.

FOR MAXIMUM HEIGHT ALLOWED, REFER TO CURRENT TECHNICAL DATA DESCRIBING THE VIKING DELUGE VALVE USED.