1. DESCRIPTION
Viking Deluge Valves are quick opening, differential diaphragm flood valves with one moving mechanism.
The Viking Model F-2 Halar® Coated Deluge Valve is identical to the Viking Model F-1 Deluge Valve, except the Model F-2 is manufactured with specially coated components.
The body and cover of the Model F-2 Deluge Valve is coated inside and outside with Halar® Coating consisting of ethylene chlorotrifluoroethylene (ECTFE). The coating makes the valve suitable for use in corrosive environments similar to those found on offshore platforms and many industrial chemical facilities. Coatings on internal operating parts of the valve also include Teflon®, Electroless Nickel plating, and Tin plating. The Halar® Coated valve may be used to control water flow in deluge and preaction systems supplied by brackish or salt water when operation is controlled by fixed temperature hydraulic release systems. The Viking Stainless Steel Conventional Trim package is recommended for brackish or seawater applications. Also, the Viking Halar® Coated Deluge Valve has been satisfactorily evaluated as a Foam Concentrate Control Valve for use with AFFF or ATC foam in fixed foam/water sprinkler systems.

FEATURES
1. HALAR® COATING:
 a. Exceeds performance of Epoxy Coating or Kynar Coating
 b. Mechanical strength and toughness.
 c. High thermal stability
 d. High dielectric strength
 e. Resistant to most chemicals and solvents
 f. Resistant to cobalt 60 radiation
 g. All wetted surfaces are coated including pipe threads
2. VALVE:
 a. Field replaceable Diaphragm and Seat Rubbers
 b. Designed for installation in vertical or horizontal position
 c. Designed to be reset without opening the valve
 d. Compatible with Hydraulic Pneumatic and Electric Detection Systems

2. LISTINGS AND APPROVALS:
 U.L. Listed: Guide Numbers VLFT & VLJH
 American Bureau of Shipping (ABS): Certificate No. 05-HS502910C-PDA
 NYC Dept. of Buildings: MEA 89-92-E Vol. XXXI
 CE: Pressure Equipment Directive 97/23/EC

3. TECHNICAL DATA
 Specifications:
 Maximum Working Water Pressure: 250 PSI (17.4 bar)
 Style: Straight through pattern
 Connections available: See Table 1
 Factory tested to 500 PSI (33.5 bar)
 Valve differential: Approximately 2:1 (priming chamber to inlet chamber)
 Priming chamber supply restriction (required): 0.0625” (1.6 mm)
 Color of Halar® Coated Valve: Black
 Friction Loss: Refer to Table 1
 Cν Factor: Refer to Table 1
 Coating Specifications: Refer to Table 2
 Material Standards:
 Refer to Figure 2
 Ordering Information:
 Part Numbers: Refer to Table 1

Viking Technical Data may be found on The Viking Corporation’s Web site at http://www.vikinggroupinc.com. The Web site may include a more recent edition of this Technical Data Page.
TECHNICAL DATA

Deluge Valves 219b

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058
Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com

DELUGE VALVE, MODEL F-2
HALAR® COATED
STRAIGHT THROUGH STYLE
2-1/2" (DN65) - 8" (DN200)

8" - Available Since 2002
4" & 6" - Available since 2003
2-1/2" & 3" - Available since 2004

Shipping weight: Refer to Table 1

ACCESSORIES:
Refer to Current VIKING PRICE LIST for Part Numbers.
1. A STANDARD TRIM package is available. When the Halar® Coated Deluge Valve is used on systems with fresh water supplies, Viking F Deluge Valve trim sets may be used. The trim sets include the VALVE ACCESSORY package and the fittings and nipples shown on the F Deluge Valve Trim Charts. (See Table 2)
2. Where brackish or seawater is used, it is recommended that Viking Stainless Steel Trim package be used. This includes 316 stainless steel valves, pipe and fittings with brass electroless nickel-plated devices. Additional accessories are available and may be required for system operation or supervision. Refer to the system description and technical data for complete operating trim requirements for the system used.

4. INSTALLATION
NOTE: FOR INSTALLATION INSTRUCTIONS FOR USING THE HALAR® COATED DELUGE VALVE AS A FOAM CONCENTRATE CONTROL VALVE, REFER TO THE VIKING FOAM ENGINEERING DESIGN AND DATA BOOK.

Table 1 - Valve Part Numbers and Specifications

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>NOMINAL SIZE</th>
<th>PART NUMBER</th>
<th>FRICTION LOSS</th>
<th>CV FACTOR</th>
<th>SHIPPING WEIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Threaded</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NPT 65mm</td>
<td>2½"</td>
<td>12402Q/B</td>
<td>12 ft. (3.6 m)</td>
<td>155</td>
<td>66 lbs (30 kg)</td>
</tr>
<tr>
<td>Flange/Flange</td>
<td>Flange Drilling</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANSI 3"</td>
<td>12015Q/B</td>
<td>12 ft. (3.6 m)</td>
<td>228</td>
<td>82 lbs (37 kg)</td>
<td></td>
</tr>
<tr>
<td>ANSI 4"</td>
<td>11960Q/B</td>
<td>21 ft. (6.4 m)</td>
<td>416</td>
<td>146 lbs (66 kg)</td>
<td></td>
</tr>
<tr>
<td>ANSI 6"</td>
<td>11962Q/B</td>
<td>39 ft. (11.9 m)</td>
<td>884</td>
<td>271 lbs (122 kg)</td>
<td></td>
</tr>
<tr>
<td>ANSI 8"</td>
<td>11992Q/B</td>
<td>57 ft. (17.4 m)</td>
<td>1500</td>
<td>466 lbs (211 kg)</td>
<td></td>
</tr>
<tr>
<td>PN10/16</td>
<td>DN80</td>
<td>12027Q/B</td>
<td>12 ft. (3.6 m)</td>
<td>228</td>
<td>82 lbs (37 kg)</td>
</tr>
<tr>
<td>PN10/16</td>
<td>DN100</td>
<td>11966Q/B</td>
<td>21 ft. (6.4 m)</td>
<td>416</td>
<td>146 lbs (66 kg)</td>
</tr>
<tr>
<td>PN10/16</td>
<td>DN150</td>
<td>11963Q/B</td>
<td>39 ft. (11.9 m)</td>
<td>884</td>
<td>271 lbs (122 kg)</td>
</tr>
<tr>
<td>PN10</td>
<td>DN200</td>
<td>11996Q/B</td>
<td>57 ft. (17.4 m)</td>
<td>1500</td>
<td>466 lbs (211 kg)</td>
</tr>
<tr>
<td>PN16</td>
<td>DN200</td>
<td>12000Q/B</td>
<td>57 ft. (17.4 m)</td>
<td>1500</td>
<td>466 lbs (211 kg)</td>
</tr>
<tr>
<td>Groove/Groove</td>
<td>Flange Drilling / Pipe O.D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANSI / 89 mm</td>
<td>3"</td>
<td>12019Q/B</td>
<td>12 ft. (3.6 m)</td>
<td>228</td>
<td>75 lbs (34 kg)</td>
</tr>
<tr>
<td>ANSI / 114 mm</td>
<td>4"</td>
<td>11959Q/B</td>
<td>21 ft. (6.4 m)</td>
<td>416</td>
<td>136 lbs (62 kg)</td>
</tr>
<tr>
<td>ANSI / 168 mm</td>
<td>6"</td>
<td>11961Q/B</td>
<td>39 ft. (11.9 m)</td>
<td>884</td>
<td>261 lbs (119 kg)</td>
</tr>
<tr>
<td>PN10/16 / 89 mm</td>
<td>DN80</td>
<td>12644Q/B</td>
<td>12 ft. (3.6 m)</td>
<td>228</td>
<td>75 lbs (34 kg)</td>
</tr>
<tr>
<td>PN10/16 / 114 mm</td>
<td>DN100</td>
<td>12645Q/B</td>
<td>21 ft. (6.4 m)</td>
<td>416</td>
<td>136 lbs (62 kg)</td>
</tr>
<tr>
<td>PN10/16 / 165 mm</td>
<td>DN150</td>
<td>12641Q/B</td>
<td>39 ft. (11.9 m)</td>
<td>884</td>
<td>261 lbs (119 kg)</td>
</tr>
<tr>
<td>PN10/16 / 168 mm</td>
<td>DN150</td>
<td>11961Q/B</td>
<td>39 ft. (11.9 m)</td>
<td>884</td>
<td>261 lbs (119 kg)</td>
</tr>
<tr>
<td>Groove/Groove</td>
<td>Pipe O.D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>73 mm / 2½" DN65</td>
<td>12404Q/B</td>
<td>12 ft. (3.6 m)</td>
<td>155</td>
<td>66 lbs (30 kg)</td>
<td></td>
</tr>
<tr>
<td>76 mm / DN65</td>
<td>12730Q/B</td>
<td>12 ft. (3.6 m)</td>
<td>228</td>
<td>64 lbs (29 kg)</td>
<td></td>
</tr>
<tr>
<td>89 mm / DN80</td>
<td>12023Q/B</td>
<td>12 ft. (3.6 m)</td>
<td>228</td>
<td>64 lbs (29 kg)</td>
<td></td>
</tr>
<tr>
<td>114 mm / DN100</td>
<td>11514Q/B</td>
<td>21 ft. (6.4 m)</td>
<td>416</td>
<td>127 lbs (57 kg)</td>
<td></td>
</tr>
<tr>
<td>165 mm / DN150</td>
<td>11911Q/B</td>
<td>39 ft. (11.9 m)</td>
<td>884</td>
<td>245 lbs (111 kg)</td>
<td></td>
</tr>
<tr>
<td>168 mm / DN150</td>
<td>11525Q/B</td>
<td>39 ft. (11.9 m)</td>
<td>884</td>
<td>245 lbs (111 kg)</td>
<td></td>
</tr>
<tr>
<td>219 mm / 8" DN200</td>
<td>11118Q/B</td>
<td>57 ft. (17.4 m)</td>
<td>1500</td>
<td>403 lbs (182 kg)</td>
<td></td>
</tr>
</tbody>
</table>

*Expressed in equivalent length of Schedule 40 pipe based on Hazen and Williams. C=120

8" - Available Since 2002
4" & 6" - Available since 2003
2-1/2" & 3" - Available since 2004
Shipping weight: Refer to Table 1

Q= Flow
Cv= Flow Factor (GPM/1 PSI ∆P)
∆P= Pressure Loss through Valve
S= Specific Gravity of Fluid

\[Q = \frac{Cv}{\sqrt{\frac{\Delta P}{S}}} \]
A. General Instruction

1. Viking Deluge Valves may be installed in the horizontal or vertical position.
2. When the Viking Halar® Coated Deluge Valve is used on systems supplied with brackish water, salt water, foam/water (pre-mixed) solution, or any other corrosive water supply, consult Table 3 for trim material specifications. Check with manufacturer prior to using this valve with fluids other than fresh water and those listed in Table 3.
3. When the Halar® coated deluge valve is supplied with anything other than clean fresh water, such as salt water or brackish water, conventional trim should not be utilized. Stainless steel or brass Trim should be used for installations that are supplied with water supplies other than clean fresh water.
4. Use caution when using wrenches on or around Halar® Coated Valves. Halar® Coating may chip when struck with hard or sharp objects. If the Halar® coating becomes chipped, immediately repair the damaged area to inhibit the potential for corrosion. Refer to paragraph 6.III.D - Halar® Coating Repair instructions.
5. Halar® Coating is black in color. Due to its chemical resistance paint will not adhere to Halar® Coating sufficiently to resist abrasion.
6. The valve must be installed in an area not subject to freezing temperatures or physical damage.
7. The valve must be trimmed according to current Viking Trim Charts and appropriate instructions for the application. Trim Charts are printed in the Viking Engineering and Design Data book, the Viking Foam Engineering and Design Data book, and are provided with trim packages.
 a. When the Halar® Coated Deluge Valve is used on deluge or preaction systems where standard trim is required and allowed, the valve must be trimmed according to Viking Model F Trim Charts for the system used. For additional trim connections, refer to technical data describing the system being installed.

8. The priming line must be connected upstream of the system water supply main control valve or to a constant source of water at a pressure equal to the system water supply.
9. After the Deluge Valve is set, operation of the Deluge Valve requires the release of priming water from the priming chamber. This may be by automatic or manual operation of the release system. Viking Deluge Valves are compatible with hydraulic, pneumatic, and electric release systems. For specific Trim arrangements refer to Technical Data describing the system being installed.
 c. Electric Release: Solenoid Valves, Release Control Panels, and Electrical Detectors must be compatible. Consult appropriate listing and/or approval guides.

CAUTION: OPERATION OF VIKING DELUGE VALVES BY PRESSURIZING THE PRIMING CHAMBER WITH AIR PRESSURE OR ANY OTHER PRESSURIZED GAS IS NOT RECOMMENDED.

B. Placing the Valve in Service

1. Verify that the system water supply main control valve is closed, and the Halar® Coated Deluge Valve is trimmed according to current Viking Trim Charts, and schematic drawings for the system being installed.
2. Open the main drain valve in the Deluge Valve Trim.
3. Open the auxiliary drain valve in the Deluge Valve trim. Drain all water from the outlet chamber of the Deluge Valve.
4. For preaction systems, open the system main drain located on (or down stream from) the rubber seated check valve in the sprinkler system riser being supplied by the Deluge Valve.
5. Verify that all water has been drained from the system. Open all auxiliary drains and the system test valve to vent the system and drain any water contained in low points of the system piping. Allow enough time for the system to drain completely.
6. After the sprinkler system has completely drained, close all drains opened in steps No. 4 and 5 above. Keep the auxiliary drain valve and the main drain valve in the Deluge Valve trim open.
7. Set the release system. (See release system description and Technical Data for the system used). The Emergency Release must be closed.
8. Open the priming line supply valve and pressurize the priming chamber. The pressure on the priming chamber water pressure gauge must be equal to the system water supply pressure.
9. Close the auxiliary drain valve in the Deluge Valve trim.
The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058
Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com

DELUGE VALVE, MODEL F-2 HALAR® COATED STRAIGHT THROUGH STYLE
2-1/2" (DN65) - 8" (DN200)

Partially open the water supply main control valve. When water flows from the main drain, slowly close the main drain valve.

Open the water supply main control valve completely and secure.

Depress the drip check to drain any remaining water from the outlet chamber of the Deluge Valve.

Verify:
- the auxiliary drain valve in the Deluge Valve trim is CLOSED.
- the main drain valve in the Deluge Valve trim is CLOSED.
- the alarm test shut-off valve in the Deluge Valve trim is CLOSED.
- all other valves are in their normal operating position and secure.
- the water supply main control valve is fully OPEN and properly locked or supervised.
- all equipment is adequately heated and protected to prevent freezing and physical damage.
- check for, and repair all leaks.

On new installations, those systems that have been placed out of service, or where new equipment has been installed, trip test the system to verify that all equipment functions properly. See ANNUAL maintenance instructions.

CAUTION! PERFORMING A TRIP TEST RESULTS IN OPERATION OF THE DELUGE VALVE. WATER WILL FLOW INTO THE SPRINKLER PIPING. TAKE NECESSARY PRECAUTIONS TO PREVENT DAMAGE.

After completing a trip test, perform SEMI-ANNUAL maintenance.

C. Valve Removed From Service
NOTE: WHEN A VALVE HAS BEEN REMOVED FROM SERVICE AND IS SUBJECT TO FREEZING OR WILL BE OUT OF SERVICE FOR AN EXTENDED PERIOD OF TIME, ALL WATER MUST BE REMOVED FROM THE PRIMING CHAMBER, TRIM PIPING, WATER SUPPLY PIPING AND OTHER TRAPPED AREAS.

5. OPERATION (Refer to Figure 2)
NOTE: FOR OPERATION OF THE HALAR® COATED DELUGE VALVE USED AS A FOAM CONCENTRATE CONTROL VALVE, REFER TO THE VIKING FOAM ENGINEERING AND DESIGN DATA BOOK.

The deluge valve has an inlet, outlet and priming chamber. The inlet and outlet are separated from the priming chamber by the valve clapper (5) and upper diaphragm (6).

In the set condition:
System pressure is supplied to the priming chamber through a restricted priming line (trim) equipped with a check valve. System water supply pressure trapped in the priming chamber holds the clapper (5) on seat (2) due to area differential design. Clapper (5) separates the inlet chamber from the outlet chamber, keeping the outlet chamber and system piping dry.

In fire conditions:
When the release system operates, pressure is released from the priming chamber faster than it is supplied through the restricted priming line. Water supply pressure in the inlet chamber forces the clapper (5) off from seat (2), allowing water to flow through the outlet and into the system and alarm devices.

For Deluge Valves equipped with Conventional Trim:
When the deluge valve operates, the air side of the PORV looses pressure, causing the PORV to operate. When the PORV operates, it continually vents the priming chamber to prevent the deluge valve from resetting even if the open releasing devices close. The deluge valve can only be reset after the system is taken out of service, and the outlet chamber of the deluge valve and associated trim piping is depressurized and drained.

6. INSPECTIONS, TESTS AND MAINTENANCE
NOTICE: THE OWNER IS RESPONSIBLE FOR MAINTAINING THE FIRE PROTECTION SYSTEM AND DEVICES IN PROPER OPERATING CONDITION. THE DELUGE VALVE MUST BE KEPT FROM FREEZING CONDITIONS AND PHYSICAL DAMAGE THAT COULD IMPAIR ITS OPERATION.

WARNING: ANY SYSTEM MAINTENANCE WHICH INVOLVES PLACING A CONTROL VALVE OR DETECTION SYSTEM OUT OF SERVICE MAY ELIMINATE THE FIRE PROTECTION CAPABILITIES OF THAT SYSTEM. PRIOR TO PROCEEDING, NOTIFY ALL AUTHORITIES HAVING JURISDICTION. CONSIDERATION SHOULD BE GIVEN TO EMPLOYMENT OF A FIRE PATROL IN THE AFFECTED AREAS.

I. Inspection
It is imperative that the system be inspected and tested on a regular basis. The frequency of the inspections may vary due to contaminated water supplies, corrosive water supplies or corrosive atmospheres. Also, the alarm devices, detection systems or other connected trim may require a more frequent schedule. For minimum maintenance and inspection requirements, refer to NFPA 25. In addition, the Authority Having Jurisdiction may have additional maintenance, testing, and inspection requirements which must be followed. The following recommendations are minimum requirements.
Figure 1 - Conventional Trim Components

<table>
<thead>
<tr>
<th>A.1</th>
<th>B.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deluge Valve</td>
<td>Emergency Release</td>
</tr>
<tr>
<td>B.1</td>
<td>B.10</td>
</tr>
<tr>
<td>Priming Valve (Normally Open)</td>
<td>Alarm Test Valve (Normally Closed)</td>
</tr>
<tr>
<td>B.2</td>
<td>B.11</td>
</tr>
<tr>
<td>Strainer</td>
<td>Flow Test Valve (Normally Closed)</td>
</tr>
<tr>
<td>B.3</td>
<td>B.12</td>
</tr>
<tr>
<td>1/16" Restricted Orifice</td>
<td>Water Supply Pressure Water Gauge and Valve</td>
</tr>
<tr>
<td>B.4</td>
<td>B.13</td>
</tr>
<tr>
<td>Spring Loaded Check Valve</td>
<td>Auxiliary Drain Valve (Normally Closed)</td>
</tr>
<tr>
<td>B.5</td>
<td>B.14</td>
</tr>
<tr>
<td>Pressure Operated Relief Valve (PORV)</td>
<td>Drip Check Valve</td>
</tr>
<tr>
<td>B.6</td>
<td>B.15</td>
</tr>
<tr>
<td>Alarm Shut Off Valve (Normally Open)</td>
<td>Drain Cup</td>
</tr>
<tr>
<td>B.7</td>
<td>D.1</td>
</tr>
<tr>
<td>Priming Pressure Water Gauge and Valve</td>
<td>Water Supply Control Valve</td>
</tr>
<tr>
<td>B.8</td>
<td></td>
</tr>
</tbody>
</table>
II. Tests

A. Quarterly Water Flow Alarm Test
1. Notify the Authority Having Jurisdiction and those in the area affected by the test.
2. To test the local electric alarm (if provided) and/or mechanical water motor alarm (if provided), OPEN the alarm test valve (B.5) in the deluge valve trim.
 a. Electric alarm pressure switches (if provided) should activate.
 b. Electric local alarms should be audible.
 c. The local water motor gong should be audible.
 d. If equipped with remote station alarm signaling devices, verify that alarm signals were received.
3. When testing is complete, CLOSE the alarm test valve (B.5).
4. Verify:
 a. All local alarms stop sounding and alarm panels (if provided) reset.
 b. All remote station alarms reset.
 c. Supply piping to water motor alarm properly drains.
5. Verify that the alarm shut-off valve (B.9) is OPEN, and the alarm test valve (B.5) is CLOSED.
6. Verify that the outlet chamber is free of water. No water should flow from the drip check (B.7) when the plunger is pushed.
7. Notify the Authority Having Jurisdiction and those in the affected area that testing is complete.

B. Quarterly Main Drain Test
1. Notify the Authority Having Jurisdiction and those in the area affected by the test.
2. Record pressure reading from the water supply pressure gauge (B.13).
3. Verify that the outlet chamber of the deluge valve is free of water. No water should flow from the drip check (B.7) when the plunger is pushed.
4. Fully OPEN the flow test valve (B.15).
5. When a full flow is developed from the flow test valve (B.15), record the residual pressure from the water supply pressure gauge (B.13).
6. When the test is complete, SLOWLY CLOSE the flow test valve.
7. Compare test results with previous flow information. If deterioration of the water supply is detected, take appropriate steps to restore adequate water supply.
8. Verify:
 a. Normal water supply pressure has been restored to the inlet chamber, the priming chamber, and the release system. The pressure on the priming chamber water pressure gauge should equal the system water supply pressure.
 b. All alarm devices, and valves are secured in normal** operating position.
9. Notify the Authority Having Jurisdiction that the test is complete. Record and/or provide notification of test results as required by the Authority Having Jurisdiction.
** For normal operating position, refer to Figure 1 and/or Trim Charts and System Data for the system used.

C. Annual Trip Test:

CAUTION! PERFORMING THIS TEST RESULTS IN OPERATION OF THE DELUGE VALVE. WATER WILL FLOW INTO THE SPRINKLER PIPING AND FROM ANY OPEN SPRINKLERS AND/OR NOZZLES. TAKE NECESSARY PRECAUTIONS TO PREVENT DAMAGE.
1. Notify the Authority Having Jurisdiction and those in the area affected by the test.
2. Fully open the flow test valve (B.15) to flush away any accumulation of foreign material.
3. Close the flow test valve (B.15).
4. Trip the system by operating the release system. Allow a full flow to pass through the deluge valve. Water flow alarms should operate.
5. When test is complete:
 a. Close the main water supply control valve (D.1).
 b. Close the priming valve (B.1).
 c. Open the auxiliary drain valve (B.6).
 d. Open all system main drains and auxiliary drains. Allow the system to drain completely.
6. Perform SEMI-ANNUAL maintenance. Refer to paragraph 6.III.B SEMI-ANNUAL MAINTENANCE.
7. Place the system in service. Refer to Item 4.B, INSTALLATION: PLACING THE VALVE IN SERVICE.

NOTE: DELUGE VALVES SUPPLIED BY BRACKISH WATER, SALT WATER, FOAM, FOAM/WATER SOLUTION, OR ANY OTHER CORROSIVE WATER SUPPLY, SHOULD BE FLUSHED WITH GOOD QUALITY FRESH WATER BEFORE BEING RETURNED TO SERVICE.
8. Notify the Authority Having Jurisdiction that the test is complete. Record and/or provide notification of test results as required by the Authority Having Jurisdiction.
III. Maintenance

NOTICE: THE OWNER IS RESPONSIBLE FOR MAINTAINING THE FIRE PROTECTION SYSTEM AND DEVICES IN PROPER OPERATING CONDITION. THE DELUGE VALVE MUST BE KEPT FROM FREEZING CONDITIONS AND PHYSICAL DAMAGE THAT COULD IMPAIR ITS OPERATION.

Where difficulty in performance is experienced, the valve manufacturer or his authorized representative shall be contacted if any field adjustment is to be made.

WARNING: ANY SYSTEM MAINTENANCE THAT INVOLVES PLACING A CONTROL VALVE OR DETECTION SYSTEM OUT OF SERVICE MAY ELIMINATE THE FIRE PROTECTION CAPABILITIES OF THAT SYSTEM. PRIOR TO PROCEEDING, NOTIFY ALL AUTHORITIES HAVING JURISDICTION. CONSIDERATION SHOULD BE GIVEN TO EMPLOYMENT OF A FIRE PATROL IN THE AFFECTED AREAS.

A. After Each Operation:
1. Sprinkler systems that have been subjected to a fire must be returned to service as soon as possible. The entire system must be inspected for damage, and repaired or replaced as necessary.
2. Deluge valves and trim that have been subjected to brackish water, salt water, foam, foam/water solution, or any other corrosive water supply, should be flushed with good quality fresh water before being returned to service.
3. Perform SEMI-ANNUAL maintenance after every operation.

B. Semi-Annual Maintenance:
1. Remove the system from service. (Refer to Deluge or Preaction System Data that describes systems with the release system used for additional information.)
 a. Close the main water supply control valve (D.1) and priming valve (B.1).
 b. Open the auxiliary drain valve (B.6).
 c. Relieve pressure in the priming chamber by opening the emergency release valve (B.11).
2. Inspect all trim for signs of corrosion and/or blockage. Clean and/or replace as required.
3. Clean and/or replace all strainer screens (including B.2).
4. Check Halar® coating of the Deluge Valve for physical damage. If necessary, make repairs to the affected area to inhibit potential corrosion. Refer to paragraph 6.III.D - Halar® Coating Repair instructions.
5. Refer to Item 4.B: INSTALLATION: PLACING THE VALVE IN SERVICE.

C. Every Fifth Year
1. Internal inspection of deluge valves is recommended every five years unless inspections and tests indicate more frequent internal inspections are required. Refer to DISASSEMBLY instructions provided below.
2. Internal inspection of strainers, and restricted orifices is recommended every five years unless inspections and tests indicate more frequent internal inspections are required.
3. Record and provide notification of inspection results as required by the Authority Having Jurisdiction.

D. Halar® Coating Repair
If the Halar® coating becomes chipped, immediately repair the damaged area to inhibit the potential for corrosion. Follow instructions below:
1. Wipe clean and prepare the area to be repaired as instructed.
2. Using a hand held torch, gently heat the Halar® coating around the area needing repair to the melting point of the Halar®.
3. Allow the heated Halar® to flow together.
4. Allow the coating to cool as directed in the instructions.

E. Valve Disassembly
1. Remove the valve from service (see the release system description and Technical Data for additional information). Close the main control valve, open the main drain valve. Release the pressure in the priming chamber by opening the Emergency Release Valve.
2. Remove trim as required to allow removal of cover (4).
3. Remove screws (9).
4. Lift cover (4) from body (1).
5. Remove clapper assembly (3, 5, 6, 7, 10, 12) by lifting it from the body (1).
6. Inspect seat (2). If replacement is necessary, remove screws (12). Remove old seat (2) and o-ring (13). Replace with new seat (2) and o-ring (13). Replace screws (12).
7. To replace the upper diaphragm (6), remove the circle of screws (10). Remove the clamp ring (3) and remove the diaphragm rubber (6).
8. To replace the seat rubber/ring (7), remove the clapper assembly (3, 5, 6, 7, 10, 12) from the valve. Remove the circle of screws (11) and remove the seat rubber/ring (7).
TECHNICAL DATA

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058
Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com

NOTE: PRIOR TO INSTALLING A NEW CLAPPER RUBBER (6) OR SEAT RUBBER/RING (7), MAKE CERTAIN THAT ALL SURFACES ARE CLEAN AND FREE OF FOREIGN MATTER. THE PLATED SEAT (2) MUST BE SMOOTH AND FREE OF NICKS, BURRS OR INDENTATIONS.

F. Valve Reassembly
1. Prior to reassembly flush the valve of all foreign matter.
2. To reassemble valve, reverse disassembly procedure.

7. AVAILABILITY AND SERVICE
The Halar® Coated Viking Deluge Valve and accessories are available through a network of Domestic, Canadian, and International Distributors. See the Viking Corp. Web site for closest distributor or contact The Viking Corporation.

8. WARRANTIES
For details of warranty, refer to Viking’s current list price schedule or contact Viking directly.

Table 2 - Coating and Plating Specifications

Halar® Coating specification: Viking Specification SPF02-Q06 - Ethylene and Chlorotrifluoroethylene (Powder)
Total Thickness: .008" - .010" (.20 mm - .25 mm) applied as follows:
1. Parts are cleaned and sandblasted for proper adhesion and performance
2. Primer base powder and Halar® clear powder coat applied using Electrostatic Spray system
3. Powder is fusion bonded and cured in oven, and allowed to cool

Electroless Nickel Plating Specification: Viking Specification SPF02-J07
Total thickness: .002" - .0025" (.05 mm - .06 mm) applied for corrosion resistance as follows:
1. Parts are cleaned and rinsed for proper adhesion
2. Parts are chemically activated for adhesion of plating
3. Finish plate with .002"-.0025" (.05 mm - .06 mm) Electroless Nickel Phosphorus plating
4. Apply .0002" - .0003" (.005 mm - .007 mm) Tin/Lead plating to seat/rubber contact surface

Teflon® Coating Specification: Viking Specification SPF02-N05 - Teflon® Powder Coating
Total thickness: .002" - .0025" (.05 mm - .06 mm) Teflon® Powder Coating applied as follows:
1. Parts are cleaned and burned off in oven
2. Parts are etched for adhesion by grit blasting
3. Teflon® Powder is electrostatically applied to .002" - .0025" (.05 mm - .06 mm)
4. Powder is fusion bonded and cured in oven, and allowed to cool

Halar® is a registered trademark of Ausimont USA, Inc.
Teflon® is a registered trademark of E.I. Dupont Corp.

Table 3 - Trim piping Materials Chart

<table>
<thead>
<tr>
<th>VALVE CONTROLLING:</th>
<th>TRIM PIPING MATERIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresh Water Only</td>
<td>Standard - See Note 1</td>
</tr>
<tr>
<td>Sea Water Only AFFF/Sea Water Premix Solution ARC/Sea Water Premix Solution</td>
<td>316 Stainless Steel or 400 Monel. See Notes 2 & 4</td>
</tr>
<tr>
<td>AFFF/Fresh Water Premix Solution</td>
<td>Black Steel, Copper, Stainless Steel or 400 Monel. See Notes 3 & 4</td>
</tr>
<tr>
<td>AFFF/Fresh Water Premix Solution</td>
<td>Black Steel, Copper, Stainless Steel or 400 Monel. See Notes 3 & 4</td>
</tr>
<tr>
<td>AFFF Foam Concentrate in pipes 2” (DN50) & larger</td>
<td>Black Steel, Copper, Stainless Steel or 400 Monel. See Notes 3 & 4</td>
</tr>
<tr>
<td>AFFF Foam Concentrate in pipes smaller than 2” (DN50)</td>
<td>Copper 316, Stainless Steel or 400 Monel. See Note 4</td>
</tr>
<tr>
<td>ARC Foam Concentrate</td>
<td>Stainless Steel or 400 Monel. See Notes 4 & 5</td>
</tr>
</tbody>
</table>

Note 1 - Standard Trim sets available from Viking consist of galvanized nipples and fittings. Includes ACCESSORY PACKAGE.

Note 2 - After operation, the valve and trim should be flushed with good quality fresh water before being returned to service.

Note 3 - Copper trim sets are not available from Viking. They may be manufactured by installer. Refer to Model F Deluge Valve Trim Charts provided in the Viking Engineering and Design Data book for required configuration of trim, sizes and lengths of nipples and components required.

Note 4 - Monel trim sets are not available from Viking. They may be manufactured by installer. Refer to Model F Deluge Valve Valve Trim Charts provided in the Viking Engineering and Design Data book for required configuration of trim, sizes and lengths of nipples and components required.

Note 5 - DO NOT allow ARC Foam Concentrate to enter the priming chamber of the Deluge Valve. When using the Halar® Coated Deluge Valve as a Foam Concentrate Control Valve, refer to the Viking Foam Engineering and Design Data book for trim charts, technical data and special instructions.
Technical Data

Deluge Valves 219i

Deluge Valve, Model F-2 Halar® Coated Straight Through Style

2-1/2" (DN65) - 8" (DN200)

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058

Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com

Figure 2 - Replacement Parts

<table>
<thead>
<tr>
<th>ITEM NO.</th>
<th>PART NUMBER</th>
<th>DESCRIPTION</th>
<th>MATERIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>--</td>
<td>--</td>
<td>Body</td>
</tr>
<tr>
<td>2</td>
<td>02493BN</td>
<td>Seat</td>
<td>Brass UNS-C84400, Electroless Nickel, Tin Plated</td>
</tr>
<tr>
<td>3</td>
<td>08846N</td>
<td>Ring Clamp, Upper Diaphragm</td>
<td>Teflon® Coated, Bronze UNS-C84400</td>
</tr>
<tr>
<td>4</td>
<td>--</td>
<td>--</td>
<td>Cover</td>
</tr>
<tr>
<td>5</td>
<td>12012</td>
<td>Upper Diaphragm</td>
<td>Ductile Iron, Halar® Coated</td>
</tr>
<tr>
<td>6</td>
<td>02497B</td>
<td>Rubber Seat Assembly</td>
<td>EPDM - ASTM D-2000 & Stainless Steel UNS-S30400</td>
</tr>
<tr>
<td>7</td>
<td>--</td>
<td>--</td>
<td>Data Plate</td>
</tr>
<tr>
<td>8</td>
<td>08081</td>
<td>Screw, H.H.C., 1/2-13 x 1 1/4 (32)</td>
<td>Stainless Steel, UNS-S30400</td>
</tr>
<tr>
<td>9</td>
<td>08083</td>
<td>Screw, H.H.C., 3/8-16 x 1 1/2 (38)</td>
<td>Stainless Steel, UNS-S30400</td>
</tr>
<tr>
<td>10</td>
<td>08215</td>
<td>Screw, R.H.2, 10-24 x 3/8 (9.5)</td>
<td>#400 Monel</td>
</tr>
<tr>
<td>11</td>
<td>08214</td>
<td>Screw, R.H.3, 10-24 x 1 1/2 (12.7)</td>
<td>#400 Monel</td>
</tr>
<tr>
<td>12</td>
<td>--</td>
<td>--</td>
<td>O-Ring</td>
</tr>
<tr>
<td>13</td>
<td>08413</td>
<td>Washer</td>
<td>300 Series Stainless Steel</td>
</tr>
<tr>
<td>14</td>
<td>11570</td>
<td>Eye Bolt, 5/8-11-UNC</td>
<td>Carbon Steel</td>
</tr>
<tr>
<td>15</td>
<td>08414</td>
<td>Nut, 5/8-11-UNC</td>
<td>Stainless Steel</td>
</tr>
</tbody>
</table>

- Indicates replacement part not available

* Indicates part available only in sub-assembly listed below

Sub-Assembly

2, 12, 13

14712-3 14712-4 14712-6 14712-8 Seat Replacement Kit*

3, 5-7, 9-11, 14

13489 13491 13493 13485 Clapper Assembly Kit

1 Hex Head Cap Screw
2 Socket Head Cap Screw (8" Valve - #10 & 11 must be S.H.C. for clearance with seat)
3 Round Head, Phillips Drive Screw

*Note: Includes o-ring lubricant to be added to ring groove in seat.
Maximum Allowable Pilot Heights for Select Equivalent Lengths of Hydraulic Release Piping
Model F-2 Deluge Valves with 1/16” (1.6 mm) Restricted Orifice

Graph is based on 1/2” (15 mm) pilot sprinklers installed on 1/2” (15 mm) schedule 40 galvanized release system piping. If the maximum height of hydraulic release piping exceeds the limits shown on the graph, use Pneumatic or Electric Release System.

Figure 3 - 2-1/2” (DN65) & 3” (DN80) Model F-1 Deluge Valves

Figure 4 - 4” (DN100) Model F-1 Deluge Valves
Maximum Allowable Pilot Heights for Select Equivalent Lengths of Hydraulic Release Piping
Model F-2 Deluge Valves with 1/16” (1.6 mm) Restricted Orifice

Graph is based on 1/2” (15 mm) pilot sprinklers installed on 1/2” (15 mm) schedule 40 galvanized release system piping.
If the maximum height of hydraulic release piping exceeds the limits shown on the graph, use Pneumatic or Electric Release System.

Figure 5 - 6” (DN150)
Model F-1 Deluge Valves

Figure 6 - 8” (DN200)
Model F-1 Deluge Valves